If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33s^2-50s=0
a = 33; b = -50; c = 0;
Δ = b2-4ac
Δ = -502-4·33·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2500}=50$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-50}{2*33}=\frac{0}{66} =0 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+50}{2*33}=\frac{100}{66} =1+17/33 $
| -t-4=8=7t | | 4n^2+5n-9=0 | | 9-2x=35x= | | 2x-1+x/2=1+4x+5 | | -1-1/3w=1 | | j^2-47j=0 | | (625/256)^(5x-4)=1 | | 25x-17=-64 | | 6(5t+1)-12=t-(t+5) | | (4y-3)-3×=11 | | x8-12=-10 | | -1/2y-8=23 | | 9m+14m=69 | | j^2+9j+14=0 | | 3y-6-5y=-2y-6 | | 4(p-2)=3p-7 | | 3v+6-v=2v-2+5 | | 23y^2+47+2=0 | | (16b-3)-5(3b+4)=-4 | | 6x+29x-6=7(5x+9) | | 8x=−14 | | m^2+22m+21=0 | | y^2+33y=0 | | 9r+6=30r+9 | | 11/4=x+3/4 | | -2n^2-8n-30=0 | | -2w^2+800w=0 | | 7x=3+4x+7=10x+3 | | 3p^2+19p+16=0 | | x+2.5=-3.25 | | 12/18=m/17 | | x+2.5=3.25 |